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Chia-Hung Lin, Chia-Yin Hsu, and Sun-Yuan Hsieh Senior Member, IEEE

Abstract—High-performance routers require high-speed IP address lookup to achieve wire-speed packet forwarding. This study
proposes a new data structure, the Multi-Index Hybrid Trie (MIHT), for dynamic router table designs. This data structure was constructed
by combining the useful characteristics of the B+ tree and priority trie. IP lookup operations can be performed efficiently by associating
each prefix with a key value in the MIHT. Furthermore, because the required tree height and number of prefixes were reduced,
dynamic router table operations were performed efficiently using the MIHT. To reduce the memory requirement, each prefix stored
its corresponding suffix in a node of the MIHT, rather than storing a full prefix. Experiments using IPv4 and IPv6 routing databases
indicated that the proposed data structure has efficient memory usage and performs well for lookup, insertion, and deletion operations.
This study reports the results of the experiments performed to compare the proposed data structure with other structures using the
benchmark IPv4 and IPv6 prefix databases AS1221, AS4637, AS6447, AS65000, AS1221*, and AS6447* with 407,067, 219,581,
417,995, 406,973 , 12,155, and 12,278 prefixes, respectively, where AS1221* and AS6447* are IPv6 BGP routing tables.

Index Terms—Classless inter domain routing (CIDR), dynamic router tables, IP address lookup, longest matching prefix, multi-index
hybrid trie.
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1 INTRODUCTION

Internet traffic growth is the result of Internet appli-
cations such as real-time entertainment and P2P file-
sharing. Therefore, to maintain good quality of service
for the Internet, Internet routers resolve issues such
as link speed, data throughput, and packet forwarding
rate. Because there are solutions for issues regarding
link speed and data throughput, this study focuses on
the packet forwarding rate. Internet routers consult the
destination address of each packet received and perform
IP lookups in their router tables to determine the next
hop for packets. Because of the IP address shortage
problem, classless inter domain routing (CIDR) [10] has
replaced previous addressing architectures, such as the
classful routing protocol. The CIDR architecture allows
prefixes of arbitrary length and address aggregation at
arbitrary levels. Each routing entry of CIDR constitutes a
pair of (p/l, o), where p=p0p1 . . . pl−1* is a prefix formed
by binary bits, l is the length of p, and o is an output
port identifier. Let W denote the maximum possible
length of a prefix. For IPv4 [21], W=32, and for IPv6 [6],
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W=128. Although the use of CIDR has reduced the size
of router tables, IP lookups in routers have become more
complex because they must search the router table for
the longest matching prefix (LMP) that matches the des-
tination address of the incoming packet to determine the
most specific route. To determine the LMP, the operation
first compares all N prefixes in the routing table to the
destination address bit-by-bit, and thereafter determines
the longest in the set of matching prefixes. However, this
matching scheme for determining the LMP has the time
complexity O(N) and is not scalable.

Because insert/delete operations for static router ta-
bles are batched, the entire router table must be re-
built when a single prefix is inserted/deleted, causing a
negative impact on the lookup performance. Therefore,
this study focuses on dynamic router tables to support
real-time instant updates. Numerous trie-based router
table schemes have been proposed, but they have the
following shortcomings:

• Extra memory space is required because some
nodes in these structures do not contain routing
information [7], [20], [22], [25], [27], [28].

• The tree height is bound by O(W ), possibly causing
the lookup operation to traverse up to the W
nodes [2], [14], [20].

• In the search path of a lookup operation starting
from the root, there are too many prefixes that do
not match the given destination address [2], [11],
[14].

• The router tables in [7], [20], [22], [25], [28] are static
and cannot be updated in a timely manner.

To reduce the time required by router table operations,

Digital Object Indentifier 10.1109/TPDS.2013.214 1045-9219/13/$31.00 ©  2013 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

this study developed a novel data structure, the multi-
index hybrid trie (MIHT), which combines the best fea-
tures of the B+ tree and priority trie to design dynamic
router tables. The proposed data structure preserves
the advantages of the B+ tree and the trie-based data
structure and avoids the mentioned shortcomings. By
associating each prefix with a key value, we transformed
the problem of searching for an LMP into a problem
of searching for a corresponding index. Based on this
transformation, the height of the MIHT is less than
W , accelerating lookup speed and update operations.
Furthermore, the superfluous bits of each prefix do
not have to be saved in the proposed data structure,
further reducing the memory requirement. For most
instances of updating, node splitting/merging does not
occur, meaning that update operations only occur in tries
with a small size. In addition, based on the MIHT, we
propose another data structure, the partitioning multi-
index hybrid trie (PMIHT), to reduce the tree height and
expedite router table operations. The two data structures
proposed in this study can be applied to both IPv4 and
IPv6.

The remainder of this study is organized as follows:
Section 2 reviews related studies. Section 3 introduces
the proposed MIHT data structure. The dynamic router
table operations for the proposed data structure are de-
scribed in Section 4. Section 5 examines the PMIHT and
its operations. Section 6 presents the experimental results
that compare the proposed data structures with other
solutions using IPv4 and IPv6 router tables. Section 7
provides the concluding remarks.

2 RELATED WORK

Determining the longest matching prefix for IP lookup
is more complex than exact matching because it involves
two dimensions: length and value [23]. Previous meth-
ods have formulated the IP lookup problem as a range
inclusion problem [3], [5], [14], [18], [19], [24], [29]. For
an example of the length five IP address, the range
representation of prefix 10* is [10000, 10111]=[16, 23].
The range [e, f ] matches the destination address DA iff
e ≤ DA ≤ f . Some schemes define the rule to compare
two prefixes. Therefore, performing binary searches in
lookup operations is a feasible method [4], [15], [16],
[30], [31]. However, because of the enclosure property
between prefixes, a binary search in a sorted list of
prefixes can cause failure. For instance, for P1 = 10*
and P2 = 1011*, because the range of prefix P2 is in
range of prefix P1, P1 is an enclosure (enclosure prefix)
of P2. When the prefixes are not enclosure prefixes of
each other, they are disjoints (disjoint prefix). To solve
this problem, Yazdani and Min [30] distributed all of the
included prefixes in a subtree rooted at the enclosure.
Chang [4] generated auxiliary prefixes that inherit the
routing information of enclosure prefixes. Lim et al. [15]
proposed a disjoint prefix tree (DPT) that pushes enclosure
prefixes to leaves. The multiple balanced prefix tree (MBPT)

was proposed in [16]. Multiple balanced trees only have
disjointed prefixes. Numerous trie-based router table
schemes have been proposed [2], [7], [8], [11], [12], [14],
[20], [22], [25]–[27]. The patricia trie [27] removes the
one-way dummy nodes of binary tries to reduce the
number of intermediary nodes. Nilsson et al. [20] pro-
posed level compressed trie (LC-trie), which combines path
compression and level compression to reduce tree height.
The modified LC-trie [22] improves on the backtracking
disadvantage of the traditional LC-trie. The prefix tree [2]
is a combination between a trie and a tree, and in each
node a comparison is performed similar to that in a
tree. This structure does not contain a dummy node to
reduce the memory requirement. The lulea algorithm [7]
combines multibit tries with compression and bitmap.
The structure is divided into three levels in a 16-8-8
pattern. The priority trie [14] removes the dummy nodes
in a binary trie by relocating the longest prefixes in the
subtrie that are rooted by the dummy nodes. The tree
bitmap (TBM) proposed by Eatherton et al. [8] is similar
to the lulea algorithm and uses multibit trie and bitmap.
In TBM, leaf pushing is avoided, supporting the incre-
mental update. The dynamic tree bitmap (DTBM) [26] is
a variant of TBM that enables the enhanced performance
of update operations. Hsieh et al. [11] proposed the
multi-prefix trie (MPT) and indexed multi-prefix trie
(IMPT) for a dynamic router table design, where each
node can store more than one prefix and can return
LMP immediately when found for some internal nodes
for lookup operations, reducing the number of memory
accesses.

3 THE PROPOSED DATA STRUCTURE

In this section, a new data structure, MIHT, for designing
dynamic router tables is proposed. First, it is necessary to
define terms that are used in the remainder of this study.
For a prefix p = p0p1 . . . pl−1*, let q = pipi+1 . . . pl−1

for 0 ≤ i ≤ l − 1 be a suffix of p. In addition, p is
a suffix of itself. The length of a prefix p, denoted by
len(p), is the number of non-∗ symbols. For example,
len(p0p1 . . . pl−1*) = l.

An undirected graph (graph) G = (V,E) is a pair
consisting of the vertex set V and an edge set E, where
V is a finite set and E is a subset of {(u, v)| (u, v) is an
unordered pair of the distinct elements of V }. A tree is
a connected, acyclic, and undirected graph. A rooted tree
is a tree in which one of the vertices is distinguished
from the others. The distinguished vertex is the root of
a tree. The level of the node v in a rooted tree, denoted
by level(v), is the number of edges in the path from the
root to v.

Definition 1. Let p = p0p1 . . . pl−1* be a prefix, and
let k ≤ l be an integer. The k-prefix key of p, de-
noted by prefix keyk(p), is the value of (p0p1 . . . pk−1)2.
The k-suffix of p, denoted by suffixk(p), is defined as
suffixk(p) = pkpk+1 . . . pl−1, where 0 ≤ k ≤ l.
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Example 1. prefix key4(00010*) =
prefix key4(00011*) = (0001)2 = 1 and
suffix4(00010*) = 0*. Note that both prefix key4(01

∗)
and prefix key4(010

∗) are undefined because
len(01∗) = 2 < 4 and len(010∗) = 3 < 4.

TABLE 1
4-Prefix keys of selected prefixes

Prefix# Prefix Next-hop prefix key4(.) suffix4(.)

P1 00010∗ A 1 0∗
P2 00011∗ B 1 1∗
P3 00111∗ C 3 1∗
P4 0011110∗ D 3 110∗
P5 010110∗ E 5 10∗
P6 011100∗ F 7 00∗
P7 01∗ G - -
P8 100101∗ H 9 01∗
P9 1000111∗ I 8 111∗

P10 10010∗ J 9 0∗
P11 010∗ K - -
P12 0110100∗ L 6 100∗
P13 100000∗ M 8 00∗
P14 001011∗ N 2 11∗
P15 10001∗ O 8 1∗

B+ tree is a generalization of a binary search tree in
that a node can have more than two children. A B+

tree of order m is an ordered tree which satisfies the
following properties:

• Each node has at most m children.
• Each node, except the root, has at least m

2 children.
• The root has at least 2 children.
• All leaves occur on the same level.
• For a B+ tree, stores all the satellite information in

the leaves and stores only keys and child pointers
in the internal nodes.

The proposed data structure uses the priority trie
defined in [14] as an auxiliary substructure, which is
briefly described in the following subsection.

3.1 Priority Tries

The priority trie is proposed to store loner prefixes in
higher-level nodes and shorter prefixes in lower-level
nodes. In a priority trie, each node store routing infor-
mation to improve the scalability of memory usage. The
data structure is similar to the binary trie § that each
node has at most two children (left child and right child)
and the branch is based on the address bits. Each node in
a priority trie contains one prefix, causing the size of the
priority trie to be equal to that of the routing table. Two
types of nodes are in a priority trie: priority nodes and
ordinary nodes. If p is a prefix stored in node v of a priority
trie with len(p) = level(v), v is an ordinary node and p is
an ordinary prefix. Otherwise, v is a priority node and
p is a priority prefix. Note that, we can construct the
priority trie by inserting the prefixes in random order
since the priority trie is a dynamic structure. Assume
that we insert the prefix set in order to construct priority
trie associated with Table 1. We first construct a root to

§. Binary trie is the most natural and basic trie structure to represent
prefixes. In a binary trie, there are only two pointers in each node, and
the bits of prefixes is used to direct the branching. The prefix stored in
a node v at level l is equal to the string of bits labeling the path from
root to node v.

insert the first prefix P1. Then we insert P2 starting from
the root. Since the root is not “NULL”, we check whether
len(P2) ≤ len(P1), or len(P2) > len(P1) and P2 doesn’t
match P1. If the condition holds, we insert P2 to next
level. Because the 1st bit of P2 is 0, we insert P2 into the
left child of the root node. With the same processing, we
insert P3 into the left child of the node which storing
P2. For inserting prefix P4, the above condition holds
until comparing P4 with P3. Since len(P4) > len(P3) and
P4 matches P3, hence we replace P3 with P4 and insert
P3 into next level. According the 3rd bit of P3 is 1, we
then insert P3 into right child of the node which storing
P4. Constructing process continuing until the whole
prefixes insert into priority trie. As shown in Fig. 1, each
node contains a prefix and two pointers that pointed
to successive tree nodes. The terms PRIORITY LOOKUP,
PRIORITY INSERT, and PRIORITY DELETE represent the
algorithms for lookup, insertion, and deletion opera-
tions, respectively, in a priority trie in O(h) time, where
h is the height of a priority trie with N prefixes [2]. The
PRIORITY LOOKUP algorithm can determine the LMP,
and when DA matches prefix p at a priority node, p is
LMP.

Definition 2. Let PT [i] for i = 0, . . . , 2k−1 be the priority
trie that is constructed using the suffix suffixk(p), where
prefix keyk(p) = i. Specifically, let PT [−1] be the prior-
ity trie containing all of the prefixes p with len(p) < k.

Example 2. Because prefix key4(00011*)=prefix key4(00
010*)=1, the two suffixes suffix4(00011*)=1* and
suffix4(00010*)=0* are stored in PT [1]. Note that 01*
and 010* are stored in PT [−1] because len(01*)=2 < 4
and len(010*)=3 < 4.

P1

P2 P8

P7P4 P9

P3

P11 P6

P10

P5

P13

P15

: priority node

: ordinary node

P14

P12

Fig. 1. A priority trie which associated with Table 1.

3.2 Multi-Index Hybrid Tries

For string x = x1 · · ·xl of length l and string y = y1 · · · yn
of length n, the concatenation of x and y, denoted by x ·y,
is the string obtained by appending y to the end of x, as
in x1 . . . xly1 . . . yn.

Definition 3. A (k,m)-multi-index hybrid trie ((k,m)-
MIHT) is a data structure combining a B+ tree Tb of
order m and priority tries, which contains two types
of nodes: index nodes (i-node) and data nodes (d-node).
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Let Ii(u) and childj(u) be the i-th index and j-th child
pointer stored in a index node u respectively. According
to B+ tree property, i = 1, . . . ,m−1 and j = 0, . . . ,m−1.
Those i-node and d-node have the following data fields
and structure characterizations:

1) The root is a pointer array with a size of two, root[0]
points to the root of PT [−1] and root[1] points to
the root of Tb.

2) An i-node having at least one child is an internal
i-node. Otherwise, it is an external i-node.

3) Each internal i-node u contained the following
fields:
(a) leaf(u) is a field with a boolean value, indicat-

ing whether u is a leaf. For the internal i-node
u, leaf(u) is set as FALSE.

(b) The number of children for each internal i-
node (except for the root) is between �m

2 � and
m. Field t(u) records the number of indices
stored in u. Because t(u) must be one less
than the number of children of u, �m

2 � − 1 ≤
t(u) < m. The number of children of the root
is between 2 and m.

(c) The t(u) indices, denoted by
I1(u), I2(u), . . . , It(u)(u), are stored in
i-node u with an ascending order
I1(u) < I2(u) < · · · < It(u)(u).

(d) There are t(u) + 1 child-pointers, denoted by
child0(u), child1(u), . . . , childt(u)(u), point to
t(u) + 1 subtrees such that for each index x
in the sub-tree pointed to by childi(u), the
following three conditions hold: (i) x < I1(u)
if i = 0; (ii) x ≥ It(u)(u) if i = t(u); and (iii)
Ii(u) ≤ x < Ii+1(u) if 0 < i < t(u).

(e) The content of an internal i-
node can be represented as
(leaf(u), t(u), child0(u), I1(u), child1(u), I2(u),
. . . , It(u)(u), childt(u)(u)) (Figure 2).

4) The fields of each external i-node v were similar to
those of an internal i-node, but had the following
two differences:
(a) leaf(v) is set as TRUE.
(b) childi(v) points to the root of PT [Ii(v)] for i =

1, . . . , t(v).
5) Each d-node w had the following fields:

(a) priority(w) recorded the boolean value, indi-
cating whether w is a priority node. If the
prefix corresponding to w is a priority prefix,
it is set as TRUE; otherwise, it is set as FALSE.

(b) s(w) is the suffix stored in w.
(c) If w is in PT [Ii(v)], where v is an external i-

node, then port(s(w)) is the output port of the
prefix Ii(v) · s(w).

(d) left(w) is a pointer indicating the left-child (d-
node) of w if it exists; otherwise, the pointer
is set as “NULL”.

(e) right(w) is a pointer indicating the right-child
(d-node) of w if it exists; otherwise, the pointer

is set as “NULL”.

Figure 3 shows a (4,4)-MIHT. A pointer array root
points to the PT [−1] and a B+ tree. There are four i-
nodes, a, b, c, and d, in which a is an internal i-node, and
b, c, and d are external i-nodes. Each i-node has at least
�m

2 �=2 and at most m=4 child-pointers. The indices in
each i-node satisfy Definition 3 3(c). For example, indices
I1(c) = 5, I2(c) = 6, and I3(c) = 7 are greater than
or equal to I1(a)=5, and less than I2(a)=8. For node d
(external i-node), child1(d) pointed to the root of PT [8],
and child2(d) pointed to the root of PT [9]. Furthermore,
two suffixes, 0* and 1*, were stored in PT [1], in which
0* was a suffix corresponding to the original prefix
I1(b) · 0*=00010*, and 1* was a suffix corresponding to
the original prefix I1(b) · 1*=00011*.

Definition 4. The index-set of the i-node v in a (k,m)-
MIHT, denoted by iSet(v), is defined as iSet(v) =
{I1(v), . . . , It(v)(v)} (i.e., the set of all indices in v).

Example 3. In Fig. 3, iSet(a) = {5, 8}, iSet(b) = {1, 2, 3},
iSet(c) = {5, 6, 7}, and iSet(d) = {8, 9}.

 

Fig. 2. Data fields of the i-node u.

PT[-1]

: Priority 

Trie

(010*,K)

(01*,G)

root[0] root[1]

PT[1] PT[2] PT[3] PT[5] PT[6] PT[7] PT[8] PT[9]

(1*,B)

(11*,N)

(01*,H)

(0*,A)

(110*,D) (10*,E)

(100*,L)

(00*,F)

(1*,C)

(111*,I)

(00*,M)

(1*,O)

(0*,J)

5 8

1 2 3 5 6 7 8 9

internal 

index node

external 

index node

data node

a

b c d

Fig. 3. A (4,4)-MIHT.

For a tree T , the height of T , denoted by h(T ), equals
the max{level(v)| v is a node in T}. The height of (k,m)-
MIHT T equals the max{level(v)| v is a d-node in T}.
Let hb be the height of a B+ tree in T . When the number
of child-pointers of each i-node reached the minimum
and the number of indices of each i-node reached the
maximum (i.e., 2k indices), there were �m

2 �hb = 2k

�m
2 �−1

external i-nodes, resulting in hb = O( k
logm ). Let h′

be the height of PT [−1] and h = max{h(PT [i])| i =
1, 2, . . . , 2k − 1}. In addition, h′ = O(W − k). Because
h(T ) ≤ hb + h+ h′, the following result was obtained.

Proposition 1. Let W be the length of the IP address and let
T be a (k,m)-MIHT. Therefore, h(T ) = O( k

logm +W ).

4 DYNAMIC ROUTER TABLE OPERATIONS
4.1 Construction
Assume that the array root is allocated prior to construct-
ing the (k,m)-MIHT. First, the following algorithm was
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used to create a root node of PT [−1] and a root node of a
B+ tree. Following the mentioned initialization process,
an insertion algorithm (described in Section 4.2) was
used to insert prefixes in the router table. The procedures
ALLOCATE D-NODE and ALLOCATE I-NODE allocated
the memory space of the d-node and i-node, respectively.
Both of these required O(1) time.

Algorithm 1: MIHT CREATE(root)
1 root[0] := ALLOCATE D-NODE()
2 root[1] := ALLOCATE I-NODE()
3 leaf(root[1]) := TRUE

4.2 Insertion
The insertion algorithm for the (k,m)-MIHT was in
Algorithm MIHT INSERT. The concept of this algo-
rithm is described as follows. To insert the prefix p =
p0p1 . . . pl−1* into the (k,m)-MIHT T , operations were
executed based on the following scenario:

Case 1: len(p) ≥ k. By regarding prefix keyk(p) as a
key value, T was traversed from the root to a
leaf v and split it (by executing the algorithm
for splitting) if necessary. If prefix keyk(p) /∈
iSet(v), prefix keyk(p) was inserted into v as
a new index and split it if necessary. Therefore,
an index Ii(v) must be in an i-node v with
Ii(v) = prefix keyk(p). Thereafter, suffixk(p)
was inserted into PT [Ii(v)].

Case 2: len(p) < k. Insert p into PT [−1] directly.
MIHT INSERT(p, root[0], root[1]) was the initial call to

insert prefix p. Illustration of Algorithm I-NODE SPLIT,
examples for inserting prefixes, and time complexity
analysis of the insertion algorithm are provided in Ap-
pendix A.

Theorem 1. Algorithm MIHT INSERT(p, u, v) can insert
the prefix p into a (k,m)-MIHT T in O( km

logm +W ) time.

4.3 Lookup
The process of the search algorithm, MIHT LOOKUP, is
described as follows. Given the destination address DA,
the algorithm searches a (k,m)-MIHT T starting from
the root of T pointed by root[1] in a top-down manner.
A simple tree traversal from the root of T to a leaf v
is performed, incorporated with a binary search using
key value prefix keyk(DA) to search each visited node.
If prefix keyk(DA) = Ii(v), where i = 1, . . . , t(v) (i.e.,
prefix keyk(DA) ∈ iSet(v)), then the algorithm searches
suffixk(DA) in PT [Ii(v)]. If we find the best match of
suffixk(DA) in some priority trie, then it is the LMP,
and the search process is terminated. Otherwise, the
algorithm searches DA in PT [−1]. The algorithm is de-
tailed in Algorithm MIHT LOOKUP(DA, root), where
next hop is used to record the output port of the current
better matching prefix, and default route is used to
record the default output port.

Algorithm 2: MIHT INSERT(p, u, v)
1 if len(p) � k then // p should be insert into B+ tree
2 if t(root[1]) = m− 1 then
3 new root :=ALLOCATE I-NODE()
4 child0(new root) := root[1]
5 root[1] := new root
6 I-NODE SPLIT(root[1], 0, child0(root[1]),

prefix keyk(p))

7 find i such that Ii(v) ≤ prefix keyk(p) < Ii+1(v)
8 if leaf(v) then // v is an external i-node
9 if (prefix keyk(p) �= Ii(v)) or (i = 0) then

// prefix_keyk(p) /∈ iSet(v)
10 i := i+ 1
11 move [Ii, childi], . . . , [It(v), childt(v)] in i-node v to

[Ii+1, childi+1], . . . , [It(v)+1, childt(v)+1] in i-node
v

12 Ii(v) := prefix keyk(p)
13 childi(v) := NULL
14 t(v) := t(v) + 1

15 PRIORITY INSERT(childi(v), suffixk(p)) // insert
suffixk(p) into PT [Ii(v)]

16 else // v is an internal i-node
17 c := childi(v)
18 if t(c) = m− 1 then
19 if (leaf(c) and prefix keyk(p) /∈ iSet(c)) or

¬leaf(c) then
20 I-NODE SPLIT(v, i, c,

prefix keyk(p)) // split node c
21 if prefix keyk(p) ≥ Ii+1(v) then
22 i := i+ 1

23 MIHT INSERT(p, u, childi(v))

24 else // p should be insert into PT [−1]
25 PRIORITY INSERT(u, p)

Algorithm 3: I-NODE SPLIT(x, y pos, y, pKey)
1 z :=ALLOCATE I-NODE()
2 leaf(z) := leaf(y)
3 move [Iy pos+1, childy pos+1], . . . , [It(x), childt(x)] in i-node x to
[Iy pos+2, childy pos+2], . . . , [It(x)+1, childt(x)+1] in i-node x

4 childy pos+1(x) := z
5 t(x) := t(x) + 1
6 g := �m

2
�

7 if leaf(y) then
8 if pKey ≥ Ig(y) then
9 move [Ig+1, childg+1], . . . , [Im−1, childm−1] in i-node y

to i-node z
10 Im−g(z) := pKey
11 arrange the indices of z in an increasing order
12 else
13 move [Ig , childg ], . . . , [Im−1, childm−1] in i-node y to

i-node z
14 Ig(y) := pKey
15 arrange the indices of y in an increasing order

16 t(y) := g
17 t(z) := m− g
18 Iy pos+1(x) := I0(z)
19 else
20 move childg , [Ig+1, childg+1], . . . , [Im−1, childm−1] in

i-node y to i-node z
21 t(y) := g − 1
22 t(z) := m− g − 1
23 Iy pos+1(x) := Ig(y)

The initial call is MIHT LOOKUP(DA, root[0], root[1]).
Example explains how this algorithm works and the time
complexity analysis are provided in Appendix B.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Algorithm 4: MIHT LOOKUP(DA, u, v)
1 next hop := default route
2 while ¬leaf(v) do
3 find i such that Ii(v) ≤ prefix keyk(DA) < Ii+1(v)
4 v := childi(v)

5 find i such that Ii(v) ≤ prefix keyk(DA) < Ii+1(v)
6 if prefix keyk(DA) = Ii(v) then
// prefix_keyk(DA) ∈ iSet(v)

7 next hop := PRIORITY LOOKUP(suffixk(DA), childi(v))
8 if next hop �= default route then // LMP is found
9 return next hop

10 return PRIORITY LOOKUP(DA, u)

Theorem 2. Algorithm MIHT LOOKUP(DA, u, v) can
search DA in O( km

logm +W ) time.

4.4 Deletion

The deletion algorithm for the (k,m)-MIHT T is pre-
sented in this subsection. To delete the prefix p in
T , the algorithm first determines the length of p. If
len(p) < k, the algorithm uses procedure PRIOR-
ITY DELETE(p, root[0]) to delete p in PT [−1] and releases
the storage allocation of the corresponding d-node con-
taining p. Otherwise, if len(p) ≥ k, the algorithm uses
prefix keyk(p) as a key value to traverse T from the
root to an external i-node v. If prefix keyk ∈ iSet(v)
for 1 ≤ i ≤ t(v), then prefix keyk(p) must equal
Ii(v), and childi(v) points to the priority trie PT [Ii(v)].
Thereafter, a suffix suffixk(p) stored in a d-node can
be deleted from PT [Ii(v)]. Following the deletion of
the mentioned d-node, the algorithm further determines
whether PT [Ii(v)] is empty. If the condition holds, index
Ii(v) should be removed from v. However, this action
may result in a situation where the i-node v must be
merged with an other node. The proposed deletion
algorithm allows the number of indices to be smaller
than the lower bound (i.e., t(v) < �m

2 �−1) following the
removal of an index from node v. The algorithm merges
two neighboring external i-nodes, for example, x and
y, into one node when the sum of cardinalities of their
indices equals m− 1 (i.e., t(x) + t(y) = m− 1). Consider
the merger of two neighboring internal i-nodes x and
y, the parent of which is z. Without losing generality,
assume that x and y are the ith and (i+1)th children of
z, respectively. To merge y and z, Ii+1(x) must be moved
to y, and it is subsequently necessary to retain one space
for Ii+1(x). Thereafter, y and z are merged into one node
when t(y) + t(z) + 1 = m− 1.

The deletion algorithm is detailed in
MIHT DELETE(p, u, v). This algorithm uses three
auxiliary procedures: FREE I-NODE, FREE D-NODE,
and I-NODE MERGE. The first two procedures
release the storage allocations for an i-node and a
d-node, respectively, in O(1) time, and procedure
I-NODE MERGE merges two i-nodes (if necessary)
after an index has been removed from an i-node.
Algorithm MIHT DELETE(p, u, v) first searches for an

external i-node that contains the prefix keyk(p). During
this search, the visited i-nodes and the indices of the
child-pointers used for moving are stored in the arrays
nodes[·] and branch[·], respectively.

Algorithm 5: MIHT DELETE(p, u, v)
1 x := 0
2 if len(p) ≥ k then // p should be in B-plus tree TB

3 while ¬leaf(v) do
4 find i such that Ii(v) ≤ prefix keyk(p) < Ii+1(v)
5 nodes[+ + x] := v
6 branch[x] := i
7 v := childi(v)

8 find i such that Ii(v) ≤ prefix keyk(p) < Ii+1(v)
9 if prefix keyk(p) = Ii(v) then

// prefix_keyk(p) ∈ iSet(v)
10 PRIORITY DELETE(suffixk(p), childi(v))
11 FREE D-NODE
12 if childi(v) is an empty trie then
13 remove Ii(v) from v; t(v) := t(v)− 1
14 I-NODE MERGE(nodes, branch, x)

15 else // p should be in PT [−1]
16 PRIORITY DELETE(p, u)
17 FREE D-NODE

18 return

Algorithm 6: I-NODE MERGE(nodes, branch, x)
1 while x > 0 do
2 f := nodes[x]; b := branch[x]
3 c := childb(f); cl := childb−1(f); cr := childb+1(f)
4 set full = m− 1 when c is a external i-node; otherwise, set

full = m− 2
5 if t(cl) + t(c) = full then
6 if c is an internal i-node then
7 move Ib(f) in i-node f to i-node cl
8 else
9 remove Ib(f) from f

10 move all indexes and child-pointers in i-node c to
i-node cl

11 t(cl) := m− 1; FREE I-NODE(c)
12 else if t(c) + t(cr) = full then
13 if c is an internal i-node then
14 move Ib+1(f) in i-node f to i-node c
15 else
16 remove Ib+1(f) from f

17 move all indexes and child-pointers in i-node cr to
i-node c

18 t(c) := m− 1; FREE I-NODE(cr)

19 t(f) := t(f)− 1; x := x− 1
20 if x = 1 and t(root[1])=0 then
21 temp root := root[1]
22 root[1] := child0(root[1])
23 FREE I-NODE(temp root)

24 return

The initial call to delete the prefix p is
MIHT DELETE(p, root[0], root[1]). The example shows
how to delete prefixes using the proposed algorithm
and the time complexity analysis are provided in
Appendix C.

Theorem 3. Algorithm MIHT DELETE(p, u, v) can delete
prefix p in O( km

logm +W ) time.
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5 PARTITIONING THE MULTI-INDEX HYBRID
TRIE

We partitioned the (k,m)-MIHT into several smaller
(k,m)-MIHTs to reduce the tree height. The new data
structure is the (k,m)-partitioning multi-index hybrid trie
((k,m)-PMIHT). This concept has been used in many
routers [13]. The partitioned (k,m)-MIHTs were merged
through partition table P [0, 1, · · · , 2α − 1]. For a fixed
length α, the table had 2α entries corresponding to the
2α possible values from 00 . . . 0

︸ ︷︷ ︸

α bits

to 11 . . . 1
︸ ︷︷ ︸

α bits

. The entry P [i]

indicated that (k,m)-MIHT stores prefixes with original
prefixes that have a common sub-prefix p0p1 . . . pα−1,
where p0p1 . . . pα−1 is the α-bit binary representation
of i. An illustration of a (k,m)-PMIHT is shown in
Appendix D. Furthermore, the value of α should not be
larger than the length of the shortest prefix in the router
table, to prevent a situation where a prefix is stored in
more than one (k,m)-MIHT. For a more detailed descrip-
tion, if we insert prefix p into (k,m)-PMIHT, we obtain α
bits of p to determine the index value of the partitioned
table. If len(p) ≥ α, we can insert p into the correspond-
ing entry. Otherwise, if len(p) < α, p corresponds to
more than one index value. For example, assuming that
p =101000* and α = 8 (the first eight bits of a prefix
represent the index value), because 101000* contains
(10100000)2 = 160, (10100001)2 = 161, (10100010)2 =
162, and (10100011)2 = 163, p must be inserted into the
(k,m)-MIHTs, as indicated by P [160], P [161], P [162], and
P [163], respectively. Because storing duplicate prefixes is
inefficient, a proper α value must be chosen to reduce
the storage requirement. Therefore, α was the length of
the shortest prefix in the proposed router table.

To execute the router table operations (i.e., lookup, in-
sertion, and deletion) in a (k,m)-PMIHT, the correspond-
ing partition table entry was determined and operations
in the corresponding (k,m)-MIHT were executed. The
algorithms for the lookup, insertion, and deletion oper-
ations for a (k,m)-PMIHT are presented in Appendix D.

6 EXPERIMENTAL RESULTS

The experiments were performed using C language for
four benchmark IPv4 and two benchmark IPv6 prefix
databases obtained from [1], as shown in Table 2†. The
codes were run on a 3.40GHz Pentium 4 PC that had
1.99GB of memory. Figure 4 shows the total prefix-
population of the six router tables by prefix length. For
comparison with other data structures, we selected the
variables k and m for (k,m)-MIHT and (k,m)-PMIHT,
respectively, and analyzed their performances, as shown
in Section 6.1. Section 6.2 presents a comparison of the
proposed data structures with other data structures.

†. Both AS1221* and AS6447* are IPv6 BGP routing tables. Because
IPv4 stay popular in modern Internet protocol, the benchmark IPv6
prefix databases may smaller and fewer than IPv4’s currently.

TABLE 2
Six BGP Routing Tables for Experiment.

Database AS1221 AS4637 AS6447 AS65000 AS1221* AS6447*

date(year.month) 2012.04 2012.04 2012.04 2012.04 2013.02 2013.02
# of prefix 407,067 219,581 417,995 406,973 12,155 12,278
# of PT s 25,922 18,584 26,368 25,919 5,078 5,232

Size of PT [−1] 3,167 1,781 3,173 3,166 288 295
Max. size of PT s 368 232 367 367 254 261
Avg. size of PT s 15.70 11.82 15.85 15.70 10.92 10.97

# of split/merge per update 0.0091 0.0123 0.0090 0.0090 0.0083 0.0083
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Fig. 4. Prefix-population in the router tables: (a) for IPv4,
and (b) for IPv6.

6.1 Selecting k and m for MIHT

Table 2 shows the results of the PT s for the (k,m)-
MIHTs for four IPv4 router tables with k = 16 and two
IPv6 router tables with k = 16, respectively, and Figure 4
shows the length distributions of each router table. For
each IPv4 router table, more than 99% of the prefixes
had lengths ≥ 16. Therefore, if k is 16, a small number of
prefixes are stored in PT [−1]. In addition, the maximum
number of prefixes in the PT [i] of an MIHT with k = 16
is less than 369, and the average number of prefixes in
PT [i] is at most 15.85 prefixes, where i = 0, . . . , 216 − 1.
Therefore, we set k = 16. For each IPv6 router table,
we have similar observations and then we set k = 32.
Because the order may affect the performance of the
proposed data structures, selecting a proper order is
essential. Because a (k,m)-MIHT may contain several
priority tries, the average height of T is the average height
of all the priority tries plus the height of the B+ tree.
Furthermore, because a (k,m)-PMIHT T may contain

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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several (k,m)-MIHTs, the maximum height of T is defined
as the max{h(T ′)| T ′ is a (k,m)-MIHT in T}, and the
average height of T is the average of all the average
heights of the (k,m)-MIHTs in T . Table 3 shows the
experimental results, including the tree height, the mem-
ory requirements, the average times of the lookup and
update, and the number of memory accesses (MAs) for
lookup and update for the (16,m)-MIHTs and (32,m)-
MIHTs with various orders of m based on the four IPv4
and two IPv6 router databases, respectively, as shown
in Table 2. To ascertain the updating performance, the
proposed MIHT was constructed according to 90% of
the original prefix databases. Thereafter, we inserted and
deleted the remaining 10% of prefixes to calculate the
average update time. The experiment results showed
that when the order increased, all three aspects of per-
formance, including storage, time, and MA, improved
when m ≤ 16 (This situation is similar to IPv6, when
m ≤ 32). However, when the order reached 18 (as 34
in IPv6), the performance stopped improving, and some
performance metrics decreased. Although the size of the
i-node increased when the order increased, the size of the
entire routing table decreased because the number of i-
nodes decreased at the same time. To achieve enhanced
performance, we used (16,16)-MIHT for IPv4 and (32,32)-
MIHT for IPv6 to compare the proposed data structure
with other data structures, as addressed in Section 6.2.

For the (16,m)-PMIHT for IPv4 and (32,m)-PMIHT
for IPv6, because there are no prefixes with a length <8
(as 12 in IPv6), we set α = 8 for IPv4 and α = 12 for IPv6
to avoid duplicate storage of the same prefix. Table 4
shows the experimental results of the (16,m)-PMIHT
for IPv4 and (32,m)-PMIHT for IPv6 with different
orders m. We have performance observations similar to
those for the (16,m)-MIHT and (32,m)-MIHT. Hence, we
adopt the (16,16)-PMIHT for IPv4 and (32, 32)-PMIHT
for IPv6 to compare with other data structures in the
next subsection.

6.2 Comparison with other data structures

In this section, we present a comparison of the proposed
data structures, (16,16)-MIHT and (16,16)-PMIHT, with
the following structures: the binary trie, LC-trie [20],
prefix tree [2], priority trie [14], dynamic tree bitmap
(DTBM) [26], 4-MPT [11], and 4-PCMST [12]. In addition,
we also perform the comparison of (32,32)-MIHT and
(32,32)-PMIHT with all the same structures mentioned
above by IPv6 routing databases‡. First, we compared
the average tree height and the storage requirements
of the various data structures when implementing the
six router databases, as shown in Table 5 and Table 6.
For IPv4, the heights of the (16,16)-MIHT and (16,16)-
PMIHT were less than those of the other data struc-
tures, reducing the number of memory accesses required
for dynamic router table operations. For the storage

‡. Considering the address length for IPv6 is much longer than IPv4,
we adopt 5-MPT and 5-PCMST for an objective comparison.

TABLE 3
Comparison of (16,m)-MIHTs/(32,m)-MIHTs for

IPv4/IPv6 with Various Orders m.
Lookup (Avg.) Update (Avg.)

Database Order(m) Height Avg. Height Storage(KB) # Clock Cycles #MAs # Clock Cycles #MAs

6 22 12.04 7031 2434 13.17 2015 8.69
8 20 10.04 6962 2320 11.17 1904 7.68

10 19 9.04 6927 2267 10.17 1811 7.17
AS1221 12 19 9.04 6907 2249 10.17 1830 7.16

14 18 8.04 6893 2251 9.17 1743 6.66
16 18 8.04 6883 2229 9.17 1803 6.66
18 18 8.04 6875 2250 9.17 1810 6.66

6 22 11.66 3884 2084 13.51 1920 8.53
8 20 8.66 3835 2005 11.51 1797 7.51

10 19 8.66 3810 1950 10.51 1729 6.99
AS4637 12 19 8.66 3795 1948 10.51 1749 6.99

14 18 7.66 3785 1950 9.51 1660 6.48
16 18 7.66 3778 1936 9.51 1670 6.48
18 18 7.66 3773 1978 9.51 1659 6.48

6 25 12.07 7215 2441 13.51 1954 8.70
8 23 10.07 7144 2317 11.51 1832 7.68

10 22 9.07 7109 2271 10.51 1747 7.18
AS6447 12 22 9.07 7088 2260 10.51 1744 7.17

14 21 8.07 7074 2265 9.51 1692 6.67
16 21 8.07 7064 2240 9.51 1679 6.67
18 21 8.07 7056 2230 9.51 1680 6.66

6 22 12.04 7029 2425 13.51 2019 8.70
8 20 11.04 6960 2322 11.51 1883 7.68

10 19 9.04 6926 2246 10.51 1815 7.17
AS65000 12 19 9.04 6905 2242 10.51 1817 7.17

14 18 8.04 6891 2252 9.51 1747 6.66
16 18 8.04 6881 2231 9.51 1767 6.66
18 18 8.04 6874 2249 9.51 1770 6.66

24 19 10.60 6096 997 11.59 1610 7.65
26 18 8.84 6078 990 9.83 1534 6.76
28 17 7.96 6066 990 8.95 1587 6.31

AS1221* 30 17 7.96 6057 981 8.94 1593 6.30
32 16 7.08 6050 990 8.07 1544 5.86
34 16 7.08 6046 993 8.07 1506 5.86
36 16 7.08 6041 1001 8.07 1500 5.86

24 22 10.67 6291 1004 11.96 1546 7.70
26 20 8.90 6273 999 10.13 1543 6.80
28 19 8.02 6260 1001 9.25 1497 6.35

AS6447* 30 19 8.02 6252 990 9.25 1486 6.35
32 19 7.13 6245 986 8.42 1487 5.90
34 19 7.13 6239 1001 8.42 1496 5.90
36 19 7.13 6236 1010 8.42 1456 5.89

TABLE 4
Comparison of (16,m)-PMIHTs/(32,m)-PMIHTs for

IPv4/IPv6 with Various Orders m.
Height Lookup (Avg.) Update (Avg.)

Database Order(m) Max. Avg. Storage(KB) # Clock Cycles #MAs # Clock Cycles #MAs

6 18 5.67 7017 2111 10.14 1768 9.18
8 17 5.02 6951 1995 9.30 1730 8.45
10 16 4.44 6914 1977 8.54 1701 7.89

AS1221 12 16 4.34 6898 1946 8.46 1727 7.78
14 16 4.23 6886 1937 8.42 1685 7.69
16 16 4.11 6875 1937 8.31 1680 7.56
18 16 3.90 6867 1974 8.16 1692 7.43

6 18 4.86 3874 1807 9.89 1785 9.10
8 17 4.27 3828 1715 9.04 1671 8.36
10 16 3.71 3801 1700 8.23 1626 7.74

AS4637 12 16 3.65 3790 1661 8.12 1618 7.63
14 16 3.56 3781 1663 8.09 1634 7.55
16 16 3.47 3776 1667 8.05 1654 7.46
18 16 3.24 3767 1700 7.90 1595 7.31

6 21 5.76 7201 2154 10.17 1724 9.21
8 20 5.06 7132 2007 9.30 1690 8.46
10 19 4.50 7096 1979 8.60 1649 7.92

AS6447 12 19 4.39 7079 1938 8.46 1632 7.79
14 19 4.29 7067 1933 8.42 1654 7.70
16 19 4.16 7056 1934 8.30 1676 7.57
18 19 3.98 7048 1966 8.19 1631 7.45

6 18 5.66 7016 2107 10.13 1780 9.18
8 17 5.01 6949 1992 9.30 1726 8.45
10 16 4.43 6913 1967 8.54 1702 7.89

AS65000 12 16 4.34 6896 1929 8.46 1708 7.79
14 16 4.23 6884 1932 8.42 1687 7.69
16 16 4.11 6873 1927 8.31 1676 7.56
18 16 3.90 6865 1956 8.15 1677 7.42

24 16 4.99 6084 870 8.92 1497 8.08
26 15 4.42 6070 856 8.23 1520 7.44
28 14 3.91 6060 852 7.56 1483 6.94

AS1221* 30 14 3.82 6050 852 7.49 1478 6.85
32 14 3.72 6043 829 7.45 1489 6.77
34 14 3.62 6036 866 7.35 1470 6.65
36 14 3.43 6031 853 7.22 1470 6.54

24 19 5.09 6280 875 9.02 1459 8.15
26 18 4.47 6265 857 8.23 1444 7.49
28 17 3.98 6254 854 7.60 1464 7.01

AS6447* 30 17 3.88 6245 855 7.49 1483 6.89
32 17 3.79 6237 826 7.45 1443 6.81
34 17 3.68 6230 865 7.36 1439 6.70
36 17 3.52 6224 857 7.25 1455 6.59
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requirement, the binary trie, LC-trie, and DTBM con-
tained dummy nodes, substantially increasing storage
costs. Although the size of each node in the binary trie
was smaller than that of the (16,16)-MIHT and (16,16)-
PMIHT, the storage requirements of (16,16)-MIHT and
(16,16)-PMIHT were smaller than those of the binary
trie. The LC-trie and DTBM contained dummy nodes
and used larger nodes, causing the storage requirements
to be larger than those of the (16,16)-MIHT and (16,16)-
PMIHT. Above observations also similar to the experi-
mental results for IPv6.

TABLE 5
The Average Tree Heights and Storage Comparisons of

the Various Data Structures.
Avg. Tree Height Storage (KB)

Data Structure AS1221 AS4637 AS6447 AS65000 AS1221 AS4637 AS6447 AS65000
Binary Trie 32 32 32 32 11,519 6,731 11,870 11,513

LC-Trie 23 21 25 23 13,772 8,266 14,011 13,762
Prefix Tree 29 29 32 29 6,360 3,430 6,531 6,358

Priority Trie 28 27 32 29 6,360 3,430 6,531 6,358
DTBM 10 10 10 10 25,291 14,506 25,997 25,285
4-MPT 11 10 10 10 21,484 11,391 22,049 21,501

4-PCMST 10.08 9.72 10.13 10.04 22,172 12,463 23,051 22,043
(16,16)-MIHT 8.04 7.66 8.07 8.04 6,883 3,778 7,064 6,881

(16,16)-PMIHT 4.11 3.47 4.16 4.11 6,875 3,776 7,056 6,873

TABLE 6
The Average Tree Heights and Storage Comparisons in

IPv6.
Avg. Tree Height Storage (KB)

Data Structure AS1221* AS6447* AS1221* AS6447*
Binary Trie 128 128 9,215 9,496

LC-Trie 89.21 89.65 11,018 11,209
Prefix Tree 116 120 5,088 5,747

Priority Trie 112 117 5,088 5,747
DTBM 27 28 20,233 20,798
5-MPT 12.56 12.78 15,038 15,875

5-PCMST 8.08 8.83 15,520 16,597
(32,32)-MIHT 7.07 7.14 6,057 6,251

(32,32)-PMIHT 3.61 3.68 6,084 6,244

Because each memory access requires substantial time,
the number of memory accesses affects the operating
time. In addition, the operations in each node affect
the operating time. We compared the average lookup
times and average number of memory accesses required
for the various data structures, as shown in Table 7
and Table 9. In addition, the (16,16)-MIHT and (16,16)-
PMIHT required fewer memory accesses than did the
other data structures, except for the LC-Trie, implying
that their lookup times were shorter than those of the
other data structures for two key reasons: 1) All external
i-nodes in the proposed data structures were in the same
level, and 2) the average size of the searched PT s was
small when we reached the external i-node. Although
the 4-MPT returns the longest matching prefixes when
located, all prefixes in each visited p-node must be
compared and the corresponding secondary structure
must be searched, increasing the number of memory
accesses for lookup. For the proposed data structures,
because the indices in each i-node were sorted, we only
had to compare the key values of small parts of the
indices in each i-node, and search at most two secondary
structures (including PT [-1]), rather than searching nu-
merous secondary structures. Because each prefix was
a dual-dimension datum, the cost of comparing two

prefixes was greater than that of comparing two values.
Therefore, the (16,16)-MIHT and (16,16)-PMIHT required
fewer memory accesses for lookup. Although the num-
ber of memory accesses of the LC-trie was similar to
that of the (16,16)-MIHT, the LC-trie required more time
to perform lookup because when a node is visited in
an LC-Trie, the corresponding branch and skip must be
read to proceed to the next node. Although the lookup
time of the (16,16)-MIHT is slightly slower than that of
the DTBM, the (16,16)-PMIHT is faster than the DTBM
for lookup time because its tree height is less. For IPv6,
the IP address length is much longer, will cause larger
memory storage demands. However, the other structures
also suffer this problem. According to the experimental
results, (32,32)-MIHT and (32,32)-PMIHT still perform
well.

TABLE 7
Performance Comparisons for Lookup for the Various

Data Structures.
Avg. Lookup Time (# of Clock Cycles) Avg. # of Memory Accesses

Data Structure AS1221 AS4637 AS6447 AS65000 AS1221 AS4637 AS6447 AS65000

Binary Trie 2,990 2,684 3,018 3,000 23.56 23.40 23.59 23.56
LC-Trie 3,006 2,857 3,020 3,015 9.25 9.75 9.26 9.24

Prefix Tree 3,206 2,793 3,215 3,206 21.71 21.31 21.72 21.71
Priority Trie 2,864 2,481 2,872 2,862 20.09 19.65 20.09 20.09

DTBM 2,094 1,912 2,091 2,114 8.34 8.29 8.35 8.34
4-MPT 2,878 2,509 2,850 2,866 15.69 14.71 15.61 15.70

4-PCMST 2,012 1,805 2,112 2,151 10.16 9.52 9.57 9.16
(16,16)-MIHT 2,222 1,920 2,227 2,221 9.51 9.17 9.51 9.51

(16,16)-PMIHT 1,954 1,657 1,935 1,953 8.31 8.05 8.30 8.30

The performance comparisons for updating are shown
in Table 8 and Table 9. The experiments inserted and
deleted 10% of the prefixes from each of the four ex-
perimental router databases. We compared the update
operations with the various dynamic data structures.
Because the LC-trie was static, the entire table must
be reconstructed when inserting or deleting a prefix.
Therefore, this data structures was excluded from the
comparison. The (16,16)-MIHT and (16,16)-PMIHT re-
quired fewer memory accesses than did the other data
structures, except for the DTBM. The experimental re-
sults for the update operations showed that the (16,16)-
MIHT and (16,16)-PMIHT had shorter update times than
did all of the other data structures. Because a binary trie
can insert or delete the longest prefix, the number of
memory accesses was 32 for the IPv4 (128 for the IPv6).
Furthermore, the number of memory accesses for the
binary trie, the prefix tree and priority trie, exceeded 20
times. This is because, in each structure, the insertion
and deletion of numerous routing entries in the router
databases often follows a downward path from the root
to the leaves to execute the operations. Therefore, the
update time of the binary trie, prefix tree, and prior-
ity trie were longer than those of the proposed data
structures. Although the DTBM has a shorter tree height
and fewer memory accesses than the (16,16)-MIHT, it
requires more time for updating because of two reasons:
1) Because all external i-nodes in the (16,16)-MIHT are in
the same level, we reached the external i-node faster and
accessed the corresponding substructure (PT s). 2) The
average size of PT s was small (less than 15.85), causing
the updating to be performed in a small-priority trie.
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The (16,16)-PMIHT not only had the properties of the
(16,16)-MIHT, but had improved updating performance.

TABLE 8
Performance Comparison for Updating for the Various

Data Structures.
Avg. Update Time (# of Clock Cycles) Avg. # of Memory Accesses

Data Structure AS1221 AS4637 AS6447 AS65000 AS1221 AS4637 AS6447 AS65000

Binary Trie 4,138 4,021 4,216 4,181 26.55 26.70 26.59 26.54
Prefix Tree 2,445 2,395 2,426 2,438 20.87 20.33 20.77 20.85

Priority Trie 3,834 3,830 3,831 3,849 21.42 21.00 21.43 21.42
DTBM 2,755 2,705 2,749 2,754 8.90 8.91 8.91 8.90
4-MPT 2,144 2,419 2,178 2,277 6.24 6.26 6.21 6.24

4-PCMST 1,345 1,517 1,079 1,153 4.04 4.05 3.02 3.24
(16,16)-MIHT 1,907 1,780 1,853 1,900 8.90 8.70 8.90 8.90

(16,16)-PMIHT 1,679 1,693 1,622 1,679 7.56 7.46 7.56 7.57

TABLE 9
Performance Comparisons for Lookup and Update in

IPv6.
Lookup Lookup Update Update

(Avg. # of Clock Cycles) (Avg. # of MAs) (Avg. # of Clock Cycles) (Avg. # of MAs)
Data Structure AS1221* AS6447* AS1221* AS6447* AS1221* AS6447* AS1221* AS6447*

Binary Trie 1,196 1,268 14.14 15.10 2,483 2,614 18.05 14.19
LC-Trie 1,202 1,268 5.55 5.93 - - - -

Prefix Tree 1,282 1,13 13.02 13.90 1,467 1,504 14.19 14.75
Priority Trie 1,146 1,206 12.05 12.86 2,300 2,375 14.57 15.22

DTBM 838 878 4.97 5.34 1,653 1,704 6.05 6.33
5-MPT 1,151 1,197 9.41 9.99 1,286 1,350 4.24 4.41

5-PCMST 805 887 6.10 6.12 807 669 2.75 2.14
(32,32)-MIHT 889 935 5.71 6.09 1,144 1,149 6.05 6.32

(32,32)-PMIHT 782 813 4.99 5.31 1,007 1,006 5.14 5.37

7 CONCLUDING REMARKS

We propose two novel data structures, (k,m)-MIHT and
(k,m)-PMIHT, for IP lookup and updates. The chief
features of the proposed data structures are summarized
as follows: 1) By expending a small amount of effort
to search the B+ tree, the proposed data structures
performed lookup and updates in a priority trie that
contained fewer prefixes than did the original prefix set.
Therefore, the lookup and update performances were
significantly improved. 2) The proposed data structures
only stored indices (suffixes), rather than storing pre-
fixes in the nodes, and did not contain any dummy
nodes, thereby requiring less storage. 3) Because the
size of indices was smaller than those of the prefixes,
we selected larger orders to achieve faster lookups and
updates. An order of 16 resulted in shorter tree heights,
reducing the number of memory accesses for the router
table operations. The simulation results showed that the
proposed data structures are superior to the trie-based
data structures for IP lookup time and update time.
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